Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Mol Graph Model ; 126: 108625, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37722352

RESUMEN

Tacrolimus (TAC) is a drug from natural origin that can be used for topical application to control autoimmune skin diseases such as atopic dermatitis, psoriasis, and vitiligo. Computational simulation based on quantum mechanics theory by solving Schrödinger Equation for n-body problem may allow the theoretical calculation of drug geometry, charge distribution and dipole moment, electronic levels and molecular orbitals, electronic transitions, and vibrational transitions. Additionally, the development of novel nanotechnology-based delivery systems containing TAC can be an approach for reducing the dose applied topically, increasing dermal retention, and reducing the reported side effects due to the controlled release pattern. Firstly, this paper was devoted to obtaining the molecular, electronic, and vibrational data for TAC by using five semi-empirical (SE) methods and one Density Functional Theory (DFT) method in order to expand the knowledge about the drug properties by computational simulation. Then, this study was carried out to prepare TAC-loaded poly(ԑ-caprolactone) nanocapsules by interfacial polymer deposition following solvent displacement and investigate the in vitro drug permeation using the Franz diffusion cell and the photoacoustic spectroscopy. Computational simulations were compared in the three schemes SE/SE, SE/DFT, and DFT/DFT, where the first method represented the procedure used for geometry optimization and the second one was performed to extract electronic and vibrational properties. Computational data showed correspondence with TAC geometry description and electronic properties, with few differences in HOMO - LUMO gap (Δ) and dipole values. The SE/DFT and DFT/DFT methods presented a better drug description for the UV-Vis, Infrared, and Raman spectra with low deviation from experimental values. Franz cell model demonstrated that TAC was more delivered across the Strat-M® membrane from the solution than the drug-loaded poly(ԑ-caprolactone) nanocapsules. Photoacoustic spectroscopy assay revealed that these nanocapsules remained more retained into the Strat-M® membranes, which is desirable for the topical application.


Asunto(s)
Nanocápsulas , Tacrolimus , Modelos Moleculares , Conformación Molecular , Espectroscopía de Resonancia Magnética , Espectrometría Raman , Espectroscopía Infrarroja por Transformada de Fourier , Espectrofotometría Ultravioleta , Teoría Cuántica , Termodinámica , Vibración
2.
Ther Deliv ; 14(4): 295-309, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37401351

RESUMEN

Aim: This study aimed to develop, characterize and analyze the antifungal activity of chlorhexidine:ß-cyclodextrin inclusion complexes (Chx:ßCD). Materials & methods: Chx:ßCD were characterized by physicochemical techniques and the susceptibility of nine Candida strains was assessed. The inhibition of Candida albicans biofilm growth was evaluated in a denture material modified with the incorporation of Chx:ßCD. Results: Chx was better complexed in 1:2 molar ratio by freeze-drying. Chx:ßCD presented antifungal activity against all Candida strains. When incorporated into the denture material, Chx:ßCD showed better antifungal activity, as it required about 7.5% of Chx concentration compared with the raw Chx for 14 days. Conclusion: The improved characteristics of Chx:ßCD can result in new formulations to treat oral candidiasis and denture stomatitis.


Many people who wear dentures can get a fungal infection called denture stomatitis. Treating this infection is hard because it often comes back. There are many reasons why it can come back, like not following instructions, taking the wrong amount of medicine or having a bad reaction to the drugs. Using old and poorly fitting dentures and the difficulty to maintain the medicine in the right place can also make it harder to get better. One idea to make treatment easier is to add stronger drugs with fewer side effects to the material used to make dentures. That way, patients would only need to wear dentures with the right amount of medicine for a certain time to treat the infection.


Asunto(s)
Clorhexidina , beta-Ciclodextrinas , Clorhexidina/farmacología , Antifúngicos/farmacología , Candida albicans , beta-Ciclodextrinas/farmacología , beta-Ciclodextrinas/química
3.
Microsc Res Tech ; 86(7): 862-881, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37248646

RESUMEN

This study provides a comprehensive account of the various types of calcium oxalate crystals found in the genus Baccharis and assesses the exceptional value of crystal macropatterns for the taxonomy of the genus. The morphotype, occurrence, and chemical composition of the crystals found in the stems and leaves are studied. The 44 species included in this study were selected based on a broad phylogeny-based sampling covering seven subgenera and 31 sections. These species were chosen to represent all the main phylogenetic lineages of Baccharis; thus, the sampling also represents a comprehensive coverage concerning evolutionary significance for such a large and environmentally and economically important plant group. The samples were analyzed by light microscopy, scanning electron microscopy (SEM), and energy-dispersive x-ray spectroscopy (EDS). Several morphotypes of crystals, including druses, crystal sand, styloids and prisms, were present. Based on their chemical composition, the crystals were classified as pure calcium oxalate, mixtures of oxalates and sulfates, and mixtures of oxalates, sulfates, and silica. The crystal macropatterns observed in this study aid in species identification and provide novel data for the taxonomy of Baccharis. RESEARCH HIGHLIGHTS: Most species of Baccharis have a specific crystalline pattern. Each species produces a crystal morphotype or a set of morphotypes specific to it. The crystals observed are formed by calcium oxalate.


Asunto(s)
Baccharis , Oxalato de Calcio , Oxalato de Calcio/química , Filogenia , Microscopía Electrónica de Rastreo , Oxalatos , Sulfatos
4.
Artículo en Inglés | MEDLINE | ID: mdl-36818225

RESUMEN

Background: "Canela-guaicá," "guaicá," or "canela-sebo" [Ocotea puberula (Rich.) Nees] is a native species that is traditionally used by Kaingang indigenous groups for wound healing in southern Brazil. The aim of this study was to extract the mucilage from O. puberula barks, perform its phytochemical and physicochemical characterization, and investigate its healing potential. Methods: A murine wound model was used as a preclinical trial for authentication of the traditional knowledge from Kaingang indigenous communities. Results: Alkaloids and polysaccharides were identified by usual qualitative reactions and Fourier-transform infrared spectroscopy. This natural product showed thermal stability and pseudoplastic properties that were considered suitable for the intended use. A higher initial exacerbation of inflammatory response after 7 days, an improved angiogenesis after 14 days, and an increased wound shrinkage after 21 days were statistically significant for the "canela-guaicá" bark extract in the preclinical trial when compared to the silver calcium alginate dressing (positive control). Conclusion: The healing potential of the "canela-guaicá" bark extract, traditionally used by the Kaingang indigenous community from southern Brazil, was preclinically validated. This study paves the way for designing novel wound dressings containing this natural product in order to treat acute and chronic wounds.

5.
Curr Drug Deliv ; 20(10): 1533-1546, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36263476

RESUMEN

BACKGROUND: Nystatin (Nys) is a fungicidal drug commonly prescribed for candidiasis disease in several administration routes. However, Nys is a class IV drug, according to the Biopharmaceutical Classification System, that possesses limited bioavailability and is used for local activity. OBJECTIVE: This study developed and characterized nystatin:ß-cyclodextrin (Nys:ßCD) inclusion complexes and evaluated their activity against Candida spp. METHODS: Complexes were characterized by physicochemical techniques and drug dissolution profiles. The susceptibility of C. albicans, C. krusei, C. parapsilosis, C. glabrata, C. guilliermondii, C. tropicalis, and C. auris was assessed using the broth microdilution method. The applicability of Nys:ßCD inclusion complex was evaluated by incorporating it into a temporary soft material for denture stomatitis treatment. RESULTS: Nys was better complexed in a 1:1 molar ratio by freeze-drying and spray-drying methods. The inclusion complexes show bi-exponential release, an initial burst release followed by a sustained manner, presenting higher dissolution efficiency than raw Nys. The 1:1 freeze-drying Nys:ßCD complex presents antifungal activity against all evaluated Candida strains, showing the maintenance of the drug effectiveness. The inclusion complex incorporated into a tissue conditioner material for denture stomatitis treatment effectively inhibited more than 90% of C. albicans biofilm growth during 7 and 14 days, in a half dose compared to raw Nys. CONCLUSION: This work represents a significant contribution to treating a wide variety of diseases caused by the Candida species, optimizing the drug bioavailability and compliance to the treatment due to improved drug solubility, dissolution, and sustained delivery.


Asunto(s)
Antifúngicos , Estomatitis Subprotética , Antifúngicos/farmacología , Nistatina/farmacología , Candida , Estomatitis Subprotética/tratamiento farmacológico , Estomatitis Subprotética/microbiología , Pruebas de Sensibilidad Microbiana , Candida albicans , Candida parapsilosis
6.
Clin Oral Investig ; 26(3): 2635-2643, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34697656

RESUMEN

OBJECTIVES: This study aims to evaluate the opalescence (OP) and color stability of composite resins over a period of 180 days and to compare composite resins' OP with enamel's OP. MATERIALS AND METHODS: Twenty human enamel specimens (5.0 × 0.3 mm) and 9 specimens (10.0 × 1.0 mm) of 10 colors of 4 different composite resins (3 M ESPE, FGM, Ivoclar-Vivadent, Miscerium) and one brand of adhesive (3 M ESPE) were made. The results were obtained by measuring the reflectance and transmittance spectra in the visible region. After baseline measurement, composites and adhesive were analyzed after 2, 7, 30, 60, 120, and 180 days. The Lab color coordinates were used in the calculations of the OP parameter and color differences in the CIELab and CIEDE2000 methods. The data were analyzed statistically. RESULTS: The materials tested showed variation and an increase in OP over time. The OP found for enamel was 18.06 ± 2.99, and some resins showed higher results. There was a strong correlation between the coordinate b*T and the OP over time. Enamel Plus was the only one material that presented no color changes during all periods in both color analyses. Filtek Z350 XT, AT, and BT did not show differences in any time when analyzed by CIELAB. CONCLUSIONS: The OP of most composite resins changed during the period of 180 days and was different from the OP of tooth enamel. In general, composites demonstrated small color changes over the period tested, being this characteristic material dependent. CLINICAL RELEVANCE: Natural teeth present different optical properties. Composite resins restorations should present properties similar to natural teeth and it is important that characteristics like color and opalescence remain stable over time.


Asunto(s)
Resinas Compuestas , Iridiscencia , Color , Esmalte Dental , Humanos , Estudios Longitudinales , Ensayo de Materiales
7.
Pharmaceutics ; 13(12)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34959295

RESUMEN

BACKGROUND: Tacrolimus (TAC) is a drug of natural origin used in conventional topical dosage forms to control atopic dermatitis. However, direct application of the drug often causes adverse side effects in some patients. Hence, drug nanoencapsulation could be used as an improved novel therapy to mitigate the adverse effects and enhance bioavailability of the drug. METHODS: Physicochemical properties, in vitro drug release experiments, and in vivo anti-inflammatory activity studies were performed. RESULTS: TAC-loaded nanocapsules were successfully prepared by the interfacial deposition of preformed polymer using poly(ε-caprolactone) (PCL). The nanoparticulate systems presented a spherical shape with a smooth and regular surface, adequate diameter (226 to 250 nm), polydispersity index below 0.3, and suitable electrical stability (-38 to -42 mV). X-ray diffraction confirmed that the encapsulation method provided mainly the drug molecular dispersion in the nanocapsule oily core. Fourier-transform infrared spectra suggested that nanoencapsulation did not result in chemical bonds between drug and polymer. In vitro drug dissolution experiments showed a controlled release with a slight initial burst. The release kinetics showed zero-order kinetics. As per the Korsmeyer-Peppas model, anomalous transport features were observed. TAC-loaded PCL nanocapsules exhibited excellent anti-inflammatory activity when compared to the free drug. CONCLUSIONS: TAC-loaded PCL nanocapsules can be suitably used as a novel nano-based dosage form to control atopic dermatitis.

8.
J Nanosci Nanotechnol ; 21(12): 5920-5928, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34229787

RESUMEN

The aim of this paper was to use chromatographic tools for validating an analytical method for the tacrolimus (TAC) determination in polymeric nanocapsules and for identifying the drug degradation products after alkaline stress. A rapid Ultra-High-Performance Liquid Chromatography coupled with photo-diode array (UHPLC-PDA) method was successfully performed using the following chromatographic conditions: the Shimadzu Shim-pack XR-ODS III C18 column (100 mm×2.00 mm, 2.2 µm), the mobile phase consisting of methanol and acidified ultrapure water (89:11 v/v), the flow rate of 0.55 mL·min-1, and the ultraviolet (UV) detection at 235 nm. This method was validated as per International Council for Harmonisation (ICH) guidelines. In addition, a TAC forced degradation assay was carried out after alkaline stress and its degradation products were investigated using Liquid Chromatography coupled tandem mass spectroscopy (LC-MS/MS). The calibration curve was linear in the range of 100.0-300.0 µg·mL-1 (r >0.9999). Accuracy was confirmed by the TAC recovery of 96.55 to 98.19%. Precision (intraday and interday) were demonstrated by relative standard deviation lower than 0.89% and 3.25%, respectively. Selectivity and robustness were also proved. The method developed it was successfully applied to quantify TAC from polymeric nanocapsules, showing a high loading efficiency rate (>96.47%). The main drug degradation product observed in a multiple reaction monitoring (MRM) experiment was m/z 844, confirming the susceptibility of TAC under alkaline conditions; this finding was first time described.


Asunto(s)
Nanocápsulas , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Poliésteres , Reproducibilidad de los Resultados , Tacrolimus , Espectrometría de Masas en Tándem
9.
Colloids Surf B Biointerfaces ; 203: 111720, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33819820

RESUMEN

The skin aging process in women is accelerated due to decreases in serum estrogen levels triggered by the menopause process. Hence, poly(L-lactic acid) lipid-core nanocapsules containing ursolic acid (NPLA-UA) were developed using the interfacial deposition of the preformed polymer methodology as a strategy to reduce damages to the healing process caused by hormonal deficiency in ovariectomized rats. The colloidal suspensions of nanocapsules presented adequate size and morphology (254 and 375 nm), negative zeta potential (-31 and -37 mV), high encapsulation efficiency (99.89 %), and amorphous character. The analyses performed in an in vivo healing trial showed that the treatment with NPLA-UA resulted in faster wound retraction with less inflammatory response. In addition, the angiogenic process was stimulated increased synthesis of dermal collagen occurred. Ursolic acid-loaded, lipid-core nanocapsules are suitable for treating skin changes triggered by decreased estrogen in menopause.


Asunto(s)
Nanocápsulas , Animales , Estrógenos , Lípidos , Ratas , Triterpenos , Cicatrización de Heridas , Ácido Ursólico
10.
Molecules ; 25(8)2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32326159

RESUMEN

Background: As part of the efforts to find natural alternatives for cancer treatment and to overcome the barriers of cellular resistance to chemotherapeutic agents, polymeric nanocapsules containing curcumin and/or methotrexate were prepared by an interfacial deposition of preformed polymer method. Methods: Physicochemical properties, drug release experiments and in vitro cytotoxicity of these nanocapsules were performed against the Calu-3 lung cancer cell line. Results: The colloidal suspensions of nanocapsules showed suitable size (287 to 325 nm), negative charge (-33 to -41 mV) and high encapsulation efficiency (82.4 to 99.4%). Spherical particles at nanoscale dimensions were observed by scanning electron microscopy. X-ray diffraction analysis indicated that nanocapsules exhibited a non-crystalline pattern with a remarkable decrease of crystalline peaks of the raw materials. Fourier-transform infrared spectra demonstrated no chemical bond between the drug(s) and polymers. Drug release experiments evidenced a controlled release pattern with no burst effect for nanocapsules containing curcumin and/or methotrexate. The nanoformulation containing curcumin and methotrexate (NCUR/MTX-2) statistically decreased the cell viability of Calu-3. The fluorescence and morphological analyses presented a predominance of early apoptosis and late apoptosis as the main death mechanisms for Calu-3. Conclusions: Curcumin and methotrexate co-loaded nanocapsules can be further used as a novel therapeutic strategy for treating non-small-cell lung cancer.


Asunto(s)
Antineoplásicos/administración & dosificación , Curcumina/administración & dosificación , Portadores de Fármacos , Metotrexato/administración & dosificación , Nanocápsulas , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Fenómenos Químicos , Combinación de Medicamentos , Composición de Medicamentos , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Humanos , Polietilenglicoles/química , Análisis Espectral
11.
PLoS One ; 14(3): e0213625, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30897170

RESUMEN

Adapalene (ADAP) is an important drug widely used in the topical treatment of acne. It is a third-generation retinoid and provides keratolytic, anti-inflammatory, and antiseborrhoic action. However, some topical adverse effects such as erythema, dryness, and scaling have been reported with its commercial formula. In this sense, the microencapsulation of this drug using polyesters can circumvent its topical side effects and can lead to the enhancement of drug delivery into sebaceous glands. The goal of this work was to obtain ADAP-loaded poly(ε-caprolactone) (PCL) microparticles prepared by a simple emulsion/solvent evaporation method. Formulations containing 10 and 20% of ADAP were successfully obtained and characterized by morphological, spectroscopic, and thermal studies. Microparticles presented encapsulation efficiency of ADAP above 98% and showed a smooth surface and spherical shape. Fourier transform infrared spectroscopy (FTIR) results presented no drug-polymer chemical bond, and a differential scanning calorimetry (DSC) technique showed a partial amorphization of the drug. ADAP permeation in the Strat-M membrane for transdermal diffusion testing was evaluated by photoacoustic spectroscopy (PAS) in the spectral region between 225 and 400 nm after 15 min and 3 h from the application of ADAP-loaded PCL formulations. PAS was successfully used for investigating the penetration of polymeric microparticles. In addition, microencapsulation decreased the in vitro transmembrane diffusion of ADAP.


Asunto(s)
Adapaleno/administración & dosificación , Portadores de Fármacos , Microesferas , Poliésteres/química , Adapaleno/química , Rastreo Diferencial de Calorimetría , Difusión , Sistemas de Liberación de Medicamentos , Emulsiones , Membranas Artificiales , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Técnicas Fotoacústicas , Solventes/química , Espectrofotometría , Espectroscopía Infrarroja por Transformada de Fourier , Agua
12.
J Nanosci Nanotechnol ; 19(8): 4747-4757, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30913782

RESUMEN

Although nanocarrier systems have been investigated to function as therapeutic delivery agents to specific sites of the body, the drug encapsulation method is not always well elucidated. In this work, solid lipid nanoparticles (SLN) composed by stearic acid or cetostearyl alcohol were prepared by a hot homogenization method using poly(vinyl alcohol) or polysorbate as surfactant and loaded with hesperidin, a bioflavonoid that possesses many pharmacological properties. The obtained SLN were characterized by several physicochemical techniques to identify interactions between the constituents and to evaluate the drug incorporation into the nanoparticles. According to scanning electron microscopy and dynamic light scattering the hesperidin-loaded and unloaded SLN have spherical shapes, sizes ranging from 300 to 600 nm, zeta potentials varying from -35 to -20 mV, polydispersity indexes between 0.240 and 0.445, and entrapment efficiencies higher than 88%. X-ray diffraction showed the hesperidin amorphization due to its encapsulation in SLN, and also showed crystallization degree and polymorphic modification of the lipids after the SLN preparation. FTIR, Raman and Photoacoustic spectroscopy revealed no chemical reactions between drug and lipids, however, these results indicated that the drug was incorporated differently into nanoparticles based on the SLN composition. The analysis showed that stearic acid-based SLN prepared with polysorbate were more efficient to enclosure the hesperidin while the glycosydic part of the hesperidin was not entrapped in the cetostearyl alcohol-based SLN; instead, the hesperidin remained on the SLN surface due to lipid crystallization. The physicochemical characterization allowed identifying different types of hesperidin incorporation into the SLN, which can interact in a varied manner as targeted drug delivery systems.


Asunto(s)
Hesperidina , Nanopartículas , Portadores de Fármacos , Lípidos , Tamaño de la Partícula
13.
Mater Sci Eng C Mater Biol Appl ; 94: 694-702, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30423756

RESUMEN

Cilostazol (CLZ) acts as a vasodilator and antiplatelet agent and is the main drug for the treatment of intermittent claudication (IC) related to peripheral arterial disease (PAD). The usual oral dose is 100 mg twice a day, which represents a disadvantage in treatment compliance. CLZ presents several side effects, such as headache, runny nose, and dizziness. This paper aimed to obtain novel polymeric nanocapsules prepared from poly(ε-caprolactone)-poly(ethylene glycol) (PCL-PEG) blend containing CLZ. Nanocapsules showed pH values between 6.1 and 6.3, average size lower than 137 nm, low polydispersity index (<0.22) and negative zeta potential. These nanoformulations demonstrated spherical shape with smooth surface. Results achieved by X-ray diffraction (XRD) and differential scanning calorimetry (DSC) indicated drug amorphization compared to pure CLZ. Fourier-transformed infrared spectroscopy (FTIR) showed no chemical bonds between drug and polymers. Formulations presented suitable stability for physical parameters. The in vitro drug release demonstrated prolonged release with no burst effect. Drug release was controlled by both mechanisms of polymer relaxation/degradation and Fickian diffusion. Moreover, chosen CLZ-loaded nanocapsules provided an in vivo prolonged antiplatelet effect for CLZ statistically similar to aspirin. These formulations can be further used as a feasible oral drug delivery carrier for controlled release of CLZ in order to treat PAD and IC events.


Asunto(s)
Cilostazol/farmacología , Nanocápsulas/química , Inhibidores de Agregación Plaquetaria/farmacología , Poliésteres/química , Polietilenglicoles/química , Animales , Rastreo Diferencial de Calorimetría , Liberación de Fármacos , Estabilidad de Medicamentos , Concentración de Iones de Hidrógeno , Masculino , Nanocápsulas/ultraestructura , Tamaño de la Partícula , Agregación Plaquetaria/efectos de los fármacos , Ratas Wistar , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
14.
Rev. bras. farmacogn ; 28(4): 433-443, July-Aug. 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-958888

RESUMEN

Abstract Formulations containing chitosan incorporated with methanolic fraction of Euphorbia umbellata (Pax) Bruyns, Euphorbiaceae, were studied aiming future applications of this new material as medicine. In order to investigate potential interactions between chitosan and the methanolic fraction (10, 50 and 100% in relation to the amount of chitosan) physicochemical characterization was performed by scanning electron microscopy, density, differential scanning calorimetry, thermogravimetry, X-ray diffraction, Fourier-transform infrared spectroscopy and colorimetry techniques. The phenolic compounds released from the chitosan membranes were evaluated using the Folin-Ciocalteau quantification method; antioxidant and antimicrobial activity were also studied. Increasing amounts of the methanolic fraction added to polymeric matrix produced different numbers of pores on the surface of the membranes, changes in the calorimetric, spectroscopic and crystalline properties as well as color changes, when compared to the inert membrane. These changes can be attributed to chemical interactions that occurred between the structure of the chitosan and the phenolic compounds present in the studied fraction. The matrix samples incorporated with 50 and 100% of the methanolic fraction presented different release profiles of phenolic compounds from the membranes (controlled manner) and promoted antioxidant and antimicrobial activity.

15.
Appl Spectrosc ; 72(2): 251-256, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29148285

RESUMEN

We applied the open photoacoustic cell method operating at high frequency as an efficient and highly precise tool for the measurement of thermal properties of rubberized two-layer systems. The heat-coupling between the two layers is treated using the analogy between thermal and electrical resistances widely used in heat transfer problems. The thermal resistance between the two layers is considered effective and the problem is decoupled for each layer. Measurements are performed in two-layer samples of aluminum foil coated with layers of rubberized paint with different thicknesses. Thermal diffusivity and thermal conductivity are determined for the paint. The results are retrieved from the thermal resistance model assuming the effective thermal diffusivity of the composite material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...